Séquence complète sur “Calculer des longueurs” pour la 2eme Secondaire
Notions sur “Théorème de Thalès”
- Cours sur “Calculer des longueurs” pour la 2eme Secondaire
Théorème de Thalès
Si ABC et AMN sont deux triangles tels que :
M∈[AB]
N∈[AC°]
(BC) et (MN) sont deux droites parallèles
Alors les triangles ABC et AMN sont semblables.
Donc les longueurs des côtés des triangles ABC et AMN sont proportionnelles.
C’est-à-dire :
Exemple :
Sur la figure ci-dessous, qui n’est pas représentée à l’échelle, les droites (RS) et (LK) sont parallèles.
On donne : LM=6 cm LK=5 cm KM=8 “cm” SM=6 “cm”
Calculer MR.
Le point R appartient au segment [ML].
Le point S appartient au segment [MK].
Les droites (RS) et (LK) sont parallèles.
D’après le théorème de Thalès on a :
MR/ML: 2eme Secondaire /MK=RS/LK
MR/6=6/8
MR= (6×6)/8=4,5 cm
- Exercices, révisions sur “Calculer des longueurs” à imprimer avec correction pour la 2eme Secondaire
Consignes pour ces révisions, exercices :
Calculer MN dans chacun des cas suivants :
Chaque figure est constituée de deux triangles. Dire pour chacune de ces figures si on peut appliquer le théorème de Thalès.
Dans chacune des figures, les côtés rouges sont parallèles.
ABC est le triangle représenté ci-contre.
Sur la figure ci-dessous :
Un champion de ski participe à une épreuve de descente.
D’après brevet. Cristo Redentor, symbole brésilien, est une grande statue dominant la ville de Rio qui s’érige au sommet du mont Corcovado.
- Evaluation, bilan, contrôle avec la correction sur “Calculer des longueurs” pour la 2eme Secondaire
Compétences évaluées
Connaitre les hypothèses du théorème de Thalès.
Appliquer le théorème de Thalès pour des triangles emboités.
Déterminer une longueur à l’aide du théorème de Thalès.
Consignes pour ces évaluation, bilan, contrôle :
Exercice N°1
Dans la figure ci-contre, les droites (AT) et (HS) se coupent en M et les droites (AH) et (TS) sont parallèles.
Justifier l’utilisation du théorème de Thalès.
Quelles égalités peut-on écrire ?
Exercice N°2
Dans la figure ci-contre, les droites (AT) et (HS) se coupent en M et les droites (AH) et (TS) sont parallèles.
Démontrer que les droites (RM) et (PE) sont parallèles.
Justifier l’utilisation du théorème de Thalès.
On donne :
IR=6 cm IP=9,6 cm RM=6,25 cm
Calculer PE.
Exercice N°3
Observer la figure ci-contre :
On sait que les droites (OQ) et (NP) sont parallèles et on donne :
QO= 4 cm MP = 11,4 cm NP = 6 cm MQ= 7,2 cm.
Calculer MO et MN.
Cours Calculer des longueurs : 2eme Secondaire pdf
Cours Calculer des longueurs : 2eme Secondaire rtf
Exercices Calculer des longueurs : 2eme Secondaire pdf
Exercices Calculer des longueurs : 2eme Secondaire rtf
Exercices Correction Calculer des longueurs : 2eme Secondaire pdf
Evaluation Calculer des longueurs : 2eme Secondaire pdf
Evaluation Calculer des longueurs : 2eme Secondaire rtf
Evaluation Correction Calculer des longueurs : 2eme Secondaire pdf