Cours pour la 2eme Secondaire sur la synthèse sur les fractions. Enchaînement d’opérations avec des nombres en écriture fractionnaire Propriété : Dans une suite de calculs avec des fractions, tu dois effectuer dans l’ordre : Les calculs entre parenthèses. S’il y a plusieurs niveaux de parenthèses, tu dois commencer par les parenthèses les plus intérieures. Les multiplications et les divisions, en appliquant la « règle des signes » et les méthodes étudiées dans les autres leçons. Les additions et les…
Synthèse sur les fractions – Cours : 2eme Secondaire – PDF à imprimer
La division de fractions – Cours : 2eme Secondaire – PDF à imprimer
Cours pour la 2eme Secondaire sur la division de fractions. Inverse d’un nombre relatif non nul Définition 1 : a est un nombre relatif non nul. L’inverse du nombre a est le nombre 1/a . Autrement dit, l’inverse d’un nombre relatif non nul a est le nombre qui, multiplié par a, donne 1. Définition 2 (conséquence de la définition 1) : a et b sont des nombres relatifs non nuls. L’inverse du nombre a/b est le nombre b/a ….
Multiplication de fractions – Cours : 2eme Secondaire – PDF à imprimer
Cours pour la 2eme Secondaire sur la multiplication de fractions. Multiplication de fractions Propriété : a, b, c et d sont des nombres relatifs avec b≠0 et d≠0. On a : a/b×c/d=(a×c)/(b×d) Autrement dit, le produit de deux quotients est le quotient du produit des deux numérateurs par le produit des deux dénominateurs. Exemples : (-1)/5×3/2=(-1×3)/(5×2)=(-3)/10 7/5×4/(-3)=(7×4)/(5×(-3) )=28/(-15) (-13)/7×2/(-11)=(-13×2)/(7×(-11) )=(-26)/(-77)=26/77 Méthode recommandée pour multiplier deux ou plusieurs fractions : ① Détermine le signe du produit, grâce à la « règle…
Addition et soustraction de fractions – Cours : 2eme Secondaire – PDF à imprimer
Cours pour la 2eme Secondaire sur l’addition et la soustraction de fractions. Fractions égales – rappel Propriété : a, b et c sont des nombres relatifs avec b≠0 et c≠0. On a : a/b=(a×c)/(b×c) Méthode pour mettre deux fractions au même dénominateur : Pour mettre deux fractions a/b et c/d au même dénominateur, tu dois trouver un multiple commun à b et à d, de préférence le plus petit d’entre eux, afin d’obtenir une fraction égale à a/b avec…
Fractions égales – Cours : 2eme Secondaire – PDF à imprimer
Cours pour la 2eme Secondaire sur les fractions égales. Fractions – rappel Définition (quotient) : a et b sont deux nombres relatifs, avec b≠0. Le quotient de a par b, noté a/b, est le nombre qui multiplié par b, donne a. Définition (fraction) : Une fraction est un quotient de deux nombres entiers. Exemples : 3/4, (-5,1)/2, 10/1,5 et 2/(-3) sont tous des quotients mais seules 3/4 et 2/(-3) sont des fractions. Fractions égales Propriété : a, b…
Fractions égales, Produit en croix – Cours : 2eme Secondaire – PDF à imprimer
Cours sur “Fractions égales, Produit en croix” pour la 2eme Secondaire Notions sur “Les fractions (1)” Quotients égaux Propriété On ne change pas la valeur d’une écriture fractionnaire en multipliant ou en divisant le numérateur et le dénominateur un même nombre non nul. Quels que soient les nombres a,b et k (b≠0 et k≠0) on a : (k ×a)/(k ×b )= a/b Exemples : 21/(-15)= (3×7)/(3 × -5 )=7/(-5) (-70)/(-100)= (7×-10)/(10×-10)=7/10 Produit en croix Propriété L’égalité du produit en croix est un outil largement utilisé lorsqu’on manipule des fractions….
Comparaisons de fractions – Cours : 2eme Secondaire – PDF à imprimer
Cours sur “Comparaisons de fractions” pour la 2eme Secondaire Notions sur “Les fractions (1)” Nous avons appris en classe de cinquième à comparer deux fractions et nous avons aussi appris à comparer deux nombres relatifs. Nous devons maintenant apprendre en classe de quatrième à comparer des fractions qui ont des signes. Nous allons donc regrouper les méthodes de ces deux chapitres. Exemple 1 Comparer : -13/19 et (-2)/(-7) -13/19 <0 (-2)/(-7)=2/7 >0 Une fraction positive est toujours supérieure à une fraction négative. On en déduit que : -13/19<…
Additions et soustractions de fractions – Cours : 2eme Secondaire – PDF à imprimer
Cours sur “Additions et soustractions de fractions” pour la 2eme Secondaire Notions sur “Les fractions (1)” Pour additionner ou pour soustraire deux fractions qui ont le même dénominateur : on additionne ou on soustrait les numérateurs. on garde le dénominateur commun. a b et c avec c ≠0 désignent trois nombres relatifs : a/c+ b/c= (a+b)/c a/c- b/c = (a-b)/c Exemples A= (-2)/(7 )+ 3/7 = (-2+3)/7 = 1/7 B= 7/3- (-8)/3= (7-(-8))/3=(7+8)/3= 15/3=5 Pour additionner ou pour soustraire deux fractions qui n’ont pas le…
Multiplications de fractions – Cours : 2eme Secondaire – PDF à imprimer
Cours sur “Multiplications de fractions” pour la 2eme Secondaire Notions sur la “Les fractions (2)” Propriété : Pour multiplier deux nombres en écritures fractionnaires, on multiplie les numérateurs entre eux et les dénominateurs entre eux, en appliquant la règle des signes apprise dans la multiplication des nombres relatifs. Soient a, b, c et d quatre nombres tels que : b ≠0 et d ≠0 a/b × c/d= (a×c)/(b×d) Exemple A= (-3)/5×7/12= (-3×7)/(5×12)=(-21)/60=-(3×7)/(3×20)=-7/20 Dans la pratique, on respecte les 3 étapes suivantes : On détermine d’abord le signe…
Inverse d’une fraction – Cours : 2eme Secondaire – PDF à imprimer
Cours sur “Inverse d’une fraction” pour la 2eme Secondaire Notions sur la “Les fractions (2)” Définition Soit x un nombre relatif non nul. L’inverse de x est le nombre qui, multiplié par x donne 1. Exemples L’inverse de 8 est 0,125 car 8×0,125=1. L’inverse de -2 est -0,5 car -2×-0,5=1. Propriété : Soient a et b des nombres relatifs non nuls. L’inverse du nombre a est le nombre 1/a “L’inverse du nombre” a/b “est” b/a Exemples L’inverse du nombre -2 est le nombre -1/2 L’inverse du nombre -2/3 est…
Division de fractions – Cours : 2eme Secondaire – PDF à imprimer
Cours sur “Division de fractions” pour la 2eme Secondaire Notions sur la “Les fractions (2)” Propriété : Diviser par un nombre relatif différent de 0 revient à multiplier par son inverse. Soient 4 nombres a,b,c et d tels que : b ≠0,c≠0 et d≠0 a/b÷c/d=a/b×d/c=(a×d)/(b×c) Exemples : (-2)/7 ÷ 4/5= (-2)/7 × 5/4= (-2×5)/(7×4)= (-2×5)/(7×2×2)= (-5)/14 -3 ÷ 1/4= -3 × 4/1= (-12)/1= -12 (2/5)/((-10)/3)=2/5×(-3)/10=(2×-3)/(5×10)= (2×-3)/(5×2×5)=(-3)/25 Remarque : La barre de fraction principale doit être plus grande et à hauteur du signe =. Exemples : A= (3/11)/5= (3/11)/(5/1)=3/11×1/5=3/55 B=…
Résoudre un problème avec les fractions – Cours : 2eme Secondaire – PDF à imprimer
Cours sur “Résoudre un problème avec les fractions” pour la 2eme Secondaire Notions sur la “Les fractions (2)” Pour résoudre un problème avec des fractions : Il faut lire attentivement l’énoncé : Pascal, marchand d’articles de plage à Deauville, dit avoir vendu les quatre cinquièmes de son stock à la fin du mois d’Août. Au cours du mois de septembre, il a encore vendu trois quarts de ce qu’il lui restait. Durant le mois d’Octobre, Pascal vend la moitié de ce qu’il lui reste. Quelle…
Quotients égaux – Cours – Nombres relatifs en écriture fractionnaire : 2eme Secondaire – PDF à imprimer
Quotients égaux : 2eme Secondaire – Cours – Nombres relatifs en écriture fractionnaire I) Quotients égaux : Propriété : un quotient de deux nombres relatifs ne change pas en multipliant ou en divisant son numérateur et son dénominateur par un même nombre non nul. a,b,c,d désignent quatre nombres relatifs avec b≠0 et c≠0, on a : Exemples : Propriété : a,b,c,d désignent quatre nombres relatifs avec b≠0 et d≠0 Si = alors ad = bc et réciproquement Si ad = bc…