Séance 2 : 4eme, 5eme Primaire : Comparer des fractions
Séquence 1 : Fractions simples
Connaissances et compétences :
• Utiliser et représenter les fractions simples
Objectifs spécifiques :
• Comprendre et utiliser la notion de fractions simples
– Ecritures fractionnaires.
– Diverses désignations des fractions
• Repérer et placer des fractions sur une demi-droite graduée adaptée.
• Encadrer une fraction entre deux nombres entiers
Fiche de préparation de séquence pour mettre en place des séances d’apprentissage:
Séance 2 : Comparer et ranger des fractions
1/ Phase de découverte
Matériel
Fiches 2 « découverte » de la séance 1 (parts découpées) : 2 fiches par élève
Déroulement de la séance
30min Binôme
1/ Rappel
1/ Questionner les binômes :
Je vais vous énoncer des fractions et vous allez me les représenter à l’aide des parts de pizzas qui sont en votre possession.
Le maitre s’assure dans un premier temps que les élèves sachent bien représenter les différentes fractions.
Représentez 3/5, 1/3, 5/10
2/ Comparer une fraction à l’unité
A l’aide des parts qui sont en votre possession représentez 5/5
2/ Vérifier les représentations des binômes et représenter sur le tableau le disque complet partagé en 5
Conserver sur votre bureau cette représentation et montrez-moi maintenant 3/3
Représentez 10/10
Observer ces 3 représentations, que constatez-vous ?
Réponse : Ces 3 représentations représentent la même valeur = 1 unité.
Que peut-on en déduire ?
Réponse : Lorsque le numérateur et le dénominateur d’une fraction sont égaux alors la fraction a pour valeur 1.
3/ Le maitre représente au tableau 10/10 et 3/3 en utilisant des disques partagés en 10 et 3 puis écrit que 10/10 = 3/3 =5/5 =1
4/ Reformuler ce que les élèves viennent de découvrir :
Lorsqu’une pizza est partagée en 4 parts égales par exemple et que l’on prend les 4 parts, alors on prend en réalité une pizza entière c’est-à-dire une unité.
A quoi est donc égal : 2/2 ; 8/8 ;100/100….
Réponse : toutes ces fractions sont égales à 1
A l’aide des parts que vous avez en votre possession, représentez maintenant : 7/10 ; 2/3 ; 3/5
Ces fractions sont-elles plus grandes ou plus petites que l’unité ?
Réponse : Elles sont plus petites
Ecrivez au tableau ces fractions et indiquer qu’elles sont < 1 Représentez maintenant : 12/10 ; 5/3 ;8/5 Les élèves prennent conscience qu’il leur manque des parts et qu’il faut donc de nouvelles pizzas. 5/ Distribuer une nouvelle fiche 2 « découverte » et demander aux binômes de découper chaque part en indiquant derrière leur valeur Réponse : Ces fractions sont plus grandes que 1. 6/Faire remarquer que par exemple : 12/10 = 1 unité entière + 2/10 7/Ecrivez au tableau ces fractions et indiquer qu’elles sont > 1
Observez les résultats que nous avons obtenus et expliquez dans quel cas une fraction est < 1
Réponse : Une fraction est < 1 lorsque que le numérateur < dénominateur Dans quel cas une fraction est -elle > 1 ?
Réponse : Une fraction est > 1 lorsque que le numérateur > dénominateur
3/ Comparer deux fractions entre elles
6/ Ecrire au tableau ces fractions : 2/5 … 4/5 ; 8/10 … 5/10
Représentez les fractions suivantes à l’aide des parts en votre possession.
Observez ces représentations et comparer ces fractions en utilisant les signes > ou <.
Réponse : 2/5 < 4/5 8/10 > 5/10
Observez le numérateur et le dénominateur de chaque fraction et expliquez comment comparer des fractions qui ont le même dénominateur.
Réponse : Lorsque les dénominateurs sont identiques, on compare les numérateurs. La fraction qui possède le plus grand numérateur est la fraction la plus grande. (Et inversement)
7/ Ecrire maintenant au tableau : 2/5 …. 2/3 ; 3/5… 3/10
Représentez les fractions suivantes à l’aide des parts en votre possession.
Observez ces représentations et comparer ces fractions en utilisant les signes > ou <.
Réponse 2/5 < 2/3 ; 3/5>3/10
Observez le numérateur et le dénominateur de chaque fraction et expliquez comment comparer des fractions qui ont le même numérateur.
Réponse : Lorsque les numérateurs sont identiques, on compare les dénominateurs. La fraction qui possède le plus grand dénominateur est la fraction la plus petite. Et inversement
8/ Les élèves rangent les pizzas et les parts dans les enveloppes. Elles serviront à nouveau ultérieurement.
Conclusion :
Quand le numérateur est supérieur au dénominateur c’est que cette fraction est supérieure à 1 unité (il y a plus qu’une pizza entière. Il y a une pizza entière et plusieurs parts d’une autre).
Quand le numérateur est inférieur au dénominateur c’est que cette fraction est inférieure à 1 unité.
Quand le numérateur est égal au dénominateur c’est que cette fraction est égale à 1 unité.
Quand deux fractions ont le même numérateur, on compare le dénominateur : la fraction qui possède le plus grand numérateur est la fraction la plus petite.
Quand deux fractions ont le même dénominateur, on compare le numérateur : la fraction qui possède le plus grand dénominateur est la fraction la plus grande.
2/ Phase d’application
Matériel
Fiche exercices d’application
3/ Leçon
Matériel
Fiche leçon
4/ Phase d’entrainement
Matériel
Fiche exercices
Fiche de préparation-Comparer des fractions-Séance 2 pdf
Fiche de préparation-Comparer des fractions-Séance 2 rtf
Application-Comparer des fractions-Séance 2 pdf
Application-Comparer des fractions-Séance 2-Correction pdf
Leçon-Comparer des fractions-Séance 2 pdf